5

Suppose $X_1,\ldots,X_n$ are drawn i.i.d from a uniform distribution on $[0,1]$ and let $x$ be the random vector $(X_1,\ldots,X_n)$. Then consider the random variable $Y_v = v^\top x $ for all $v \in \{0,1\}^n$ — note there are $2^n$ such random variables $Y_v$. Given a range (say $\left[\frac{1}{2}n, \frac{2}{3}n\right]$ for example), what is the expected number of random variables $Y_v$ that take a value in this range; i.e. what is $$\sum_{v \in \{0,1\}^n}{\Large{}}_{Y_v \in \left[\frac{1}{2}n, \frac{2}{3}n\right]}?$$

ydubey7
  • 579
  • 2
  • 9

0 Answers0