I have $N_{\rm C}=8,$ and $N_{\rm U}=25$
Scenario 1:
$$\frac{l_{c,u}}{\sum\limits_{c=1}^{N_{\rm C}}l_{c,u}}\ge 0.1,\quad\forall u,u=1,2,\cdots,N_{\rm U}$$
and
$$\sum_{u=1}^{N_{\rm U}}l_{c,u}\le 1,\quad\forall c,c=1,2,\cdots,N_{\rm C}$$
For each $u$, a maximum of $4$ out of the $N_{\rm C}$ and $l_{c,u}$s can be non-zero.
Scenario 2:
$$\frac{l_{c,u}}{\sum\limits_{c=1}^{N_{\rm C}}l_{c,u}}\ge 0.5,\quad\forall u,u=1,2,\cdots,N_{\rm U}$$
and
$$\sum_{u=1}^{N_{\rm U}}l_{c,u}\le 1,\quad\forall c,c=1,2,\cdots,N_{\rm C}$$
For each $u$, a maximum of $4$ out of the $N_{\rm C}$ and $l_{c,u}$s can be non-zero.
Which scenario will give the maximum number of users with at least $2$ non-zero $l_{c,u}$s?