This is a story taken from Shmuel Zamir - Game theory
"This is a true event that occurred during the Second World War on the Pacific front,5 seems to contradict utility theory.
A United States bomber squadron, charged with bombing Tokyo, was based on the island of Saipan, 3000 kilometers from the bombers’ targets. Given the vast distance the bombers had to cover, they flew without fighter-plane accompaniment and carried few bombs, in order to cut down on fuel consumption. Each pilot was scheduled to rotate back to the United States after 30 successful bombing runs, but Japanese air defenses were so efficient that only half the pilots sent on the missions managed to survive 30 bombing runs.
Experts in operations research calculated a way to raise the odds of overall pilot survival by increasing the bomb load carried by each plane – at the cost of placing only enough fuel in each plane to travel in one direction. The calculations indicated that increasing the number of bombs per plane would significantly reduce the number of required bombing runs, enabling three-quarters of the pilots to be rotated back to the United States immediately, without requiring them to undertake any more missions. The remaining pilots, however, would face certain death, since they would have no way of returning to base after dropping their bombs over Tokyo.
Every single pilot rejected the suggested lottery outright. They all preferred their existing situation. "
Were they contradicting the von Neumann–Morgenstern axioms? Specifically the continuous and independence axioms?


