I would like some assistance with a problem that I have showing a CES function is also a Cobb-Douglass utility function.
Question: we have a CES function: $Y=A[\alpha K^{((1-\sigma)/\sigma))}+(1-\alpha) L^{(\sigma-1)/(\sigma)}]^{\sigma/(\sigma-1)}$ $\sigma \geq 0$ $\alpha\in [0,1]$ show it is equivalent to Cobb- Douglass when sigma equals 1
Attempted solution:
$Y=$ $A[\alpha K^{((1-\sigma)/\sigma))}+(1-\alpha) L^{(\sigma-1)/(\sigma)}]^{\sigma/(\sigma-1)}$
$\ln Y=$ $ \ln[A[\alpha K^{((1-\sigma)/\sigma))}+(1-\alpha) L^{(\sigma-1)/(\sigma)}]^{\sigma/(\sigma-1)}]$
$\ln Y=$ $ \frac{\sigma \ln [A[\alpha K^{((1-\sigma)/\sigma))}+(1-\alpha) L^{(\sigma-1)/(\sigma)}]}{\sigma-1}$
Then I take the limit of both sides as $\sigma$ approaches 1
$\lim_{\sigma \rightarrow 1} \ln Y= \\ \lim_{\sigma \rightarrow 1}\frac{\sigma \ln [A[\alpha K^{((1-\sigma)/\sigma))}+(1-\alpha) L^{(\sigma-1)/(\sigma)}]}{\sigma-1}$
I am stuck here. I keep getting $\frac{\ln[1]}{0}=\frac{0}{0}$.
My guess is tht I should use L’hops rule, but I am not sure if my function is differentiable. Even then I doubt I could solve such a complex derivative. Any thoughts, advice, etc.? Also, if I can take the derivative how do I do so? (It’s been a while, LOL)