8

I'm trying to understand the following paper: Hsieh & Ossa: A global view of productivity growth in China (2016). The pdf can be found here: https://faculty.chicagobooth.edu/chang-tai.hsieh/research/hsieh_ossa_jie.pdf

I struggle to understand the utility maximization problem right at the beginning of the paper. Can someone show me how to maximize the following utility with respect to $x_{ijs}$:

$U_j=\prod_s^S\left(\sum_i^N \int_0^{M_is^e}x_{ijs}(\nu_{is})^{\frac{\sigma_s-1}{\sigma_s}}d\nu_{is} \right)^{\frac{\sigma_s}{\sigma_s-1}\mu_{js}}$

The end result is:

$x_{ijs}=\frac{p_{ijs}^{-\sigma_s}}{P_{js}^{1-\sigma_s}}\mu_{js}E_j$

where $P_{js}=\left(\sum_i^N M_{is}^ep_{ijs}^{1-\sigma_s}\right)^\frac{1}{1-\sigma_s}$

$N$: number of countries

$S$: number of industries

$M_{is}^e$: number of entrants in industry s of country i

$x_{ijs}$: quantity of an industry s variety from country i consumed in country j

$\mu_{js}$: fraction of country j income spent on industry s varieties

$\sigma_s>1$: elasticity of substitution between industry s varieties

$p_{ijs}$: price of an industry s variety from country i in country j

$P_{js}$: ideal price index in industry s of country j

$E_j$: total expenditure in country j

strizzle
  • 81
  • 3
  • I dont understand why is there an integral in the utility function. I see that the amount of output purchased by j's consumers from the s-th sector in i ($x_{ijs}(ν{is})$) depends on the number of entrants in s in i. But I dont understand why do they integrate all the values if$x{ijs}$ from $x_{ijs}(0)$ to $x_{ijs}(M^e_{is})$, since they only consume $x_{ijs}(M^e_{is})$. Could you explain? – Grada Gukovic Aug 22 '19 at 00:05

1 Answers1

4

Take the following utility function: $$ \prod_{s \in S} \left(\sum_{i \in N} x_{i,s}^{\frac{\sigma_s-1}{\sigma_s}} \right)^{\frac{\sigma_s}{\sigma_s-1}\mu_{s}} $$

Which is a CES nested in a Cobb-Douglas.

Consider the sub-utility function: $$ Q_{s} = \left(\sum_{i \in N} x_{i,s}^{\frac{\sigma_s - 1}{\sigma_s}}\right)^{\frac{\sigma_s}{\sigma_s - 1}}. $$ Then we can re-write the utility function succinctly as: $$ U = \prod_{s \in S} Q_s^{\mu_s} $$ To solve the utility maximisation problem. Notice that $U$ is separable in the subgroups. As such, we can solve the problem using two stage budgeting.

  1. In the first step, we can determine the optimal allocation within each subgroup $s$ by maximize the sub-utility functions $Q_s$ given the total expenditure $E_s$ given on each subgroup $s$.
  2. In the second step, we determine the optimal allocation of income across each subgroup $s$.

For Step 1, we solve the following problem: $$ \max\left(\sum_{i \in N} x_{i,s}^{\frac{\sigma_s - 1}{\sigma_s}}\right)^{\frac{\sigma_s}{\sigma_s - 1}} \text{subject to } \sum_{i \in N} p_{i,s} x_{i,s} = E_s. $$ This is a CES utility function. The first order condition gives: $$ Q_s \frac{x_{i,s}^{-\frac{1}{\sigma_s}}}{\sum_{w \in N} x_{w,s}^{\frac{\sigma_s - 1}{\sigma_s}}} = \lambda p_{i,s}. $$ Then: $$ x_{i,s} = \lambda^{-\sigma_s} p_{i,s}^{-\sigma_s} \left(\frac{\sum_w x_{w,s}^{\frac{\sigma_s - 1}{\sigma_s}}}{Q_s}\right)^{-1\sigma_s} $$ Multiplying by $p_{i,s}$ and adding over all $i \in N$ gives: $$ \begin{align*} E_s = \sum_{i \in N} p_{i,s} x_{i,s} &= \lambda^{-\sigma_s} \left(\frac{\sum_w x_{w,s}^{\frac{\sigma_s - 1}{\sigma_s}}}{Q_s}\right)^{-\sigma_s} \sum_{i \in N} p_{i,s}^{1 - \sigma_s}\\ &= \lambda^{-\sigma_s} \left(\frac{\sum_w x_{w,s}^{\frac{\sigma_s - 1}{\sigma_s}}}{Q_s}\right)^{-\sigma_s} P_s^{1 - \sigma_s} \end{align*} $$ Where $E_{s} = \sum_{i\in N} p_{i,s} x_{i,s}$ and $P_{s}^{1- \sigma_s} = \sum_{i \in N} p_{i,s}^{1- \sigma_s}$.

Then: $$ x_{i,s} = E_{s} \frac{p_{i,s}^{-\sigma_s}}{P_{s}^{1-\sigma_s}} \tag{1} $$ Let's compute the value of $Q_s$: $$ \begin{align*} &x_{i,s}^{\frac{\sigma_s-1}{\sigma_s}} = E_{s}^{\frac{\sigma_s-1}{\sigma_s}} \left(\frac{p_{i,s}^{-\sigma_s}}{P_{s}^{1 -\sigma_s}}\right)^{\frac{\sigma_s-1}{ \sigma_s}},\\ \to &\sum_{i \in N} x_{i,s}^{\frac{\sigma_s-1}{\sigma_s}}= E_{j,s}^{\frac{\sigma_s-1}{\sigma_s}} \left(\frac{1}{P_{s}^{1- \sigma_s}}\right)^{\frac{\sigma_s-1}{\sigma_s}} \sum_{i \in N} p_{i,s}^{(1-\sigma_s)},\\ \to& \sum_{i \in N} x_{i,s}^{\frac{\sigma_s-1}{\sigma_s}} = E_{s}^{\frac{\sigma_s-1}{\sigma_s}} P_{s}^{\frac{1 - \sigma_s}{\sigma_s}}\\ \to & \left(\sum_i x_{i,s}^{\frac{\sigma_s-1}{\sigma_s}}\right)^{\frac{\sigma_s}{\sigma_s-1}} = E_{s} P_{s}^{-1}\\ \to& P_{s} Q_s = E_{s}. \end{align*} $$ This shows that the price index $P_s$ and the quantity index $Q_s$ are exact price and quanty indices for this subgroup (as is expected as we were maximising a CES utility function).

Let's now go to step 2. Notice that the budget constraint can be rewritten as: $$ E = \sum_{s} E_s = \sum_s P_s Q_s. $$ We want to determine $E_s$ to maximize: $$ U = \prod_{j \in S} Q_{s}^{\mu_{j,s}} \text{ s.t. } \sum_s P_{s} Q_{s} = E. $$ This is a simple Cobb-Douglas utility function. As such, we know that expenditure shares are proportional to income: $$ P_s Q_s = E_s = \frac{\mu_s}{\sum_w \mu_w} E $$ Finally, substitute this into the equation $(1)$: $$ x_{i,s} = \frac{\mu_{s}}{\sum_w \mu_w} E \frac{p_{i,s}^{-\sigma_s}}{P_{s}^{1- \sigma_s}} $$

tdm
  • 11,747
  • 9
  • 36