I am trying to find the three cervical vertebrae (C2 , C3 , C4)in x-ray videos (gray images)
I am using SURF to identify the place that has these 3 vertebrae (big box for all of them )
SURF gives me good result in this case
Now I am trying to identify each one of these vertebrae from this big box, but SURF failed in this case The SURF works very good with the area that has 3 vertebrae , but not good to find each of them separately
Update : The idea of SURF is finding the important keypoints in the image. therefore, I am using this idea to find the keypoints in 2 images then find the match points between these 2 images. in the beginning of my program , the user select 4 boxes. one big box for all vertebrae and the other 3 of each one.
I will use this selected area as a template to find them in the next images in the videos. first I will apply SURF to find the big box of the all vertebrae. and this work good with this code
now I am tying to find the three small boxes inside the big one but SURF gives me bad results (wrong boxes)
The photo show you the 4 boxes (ignore the left box and the three points ) these are the 4 template images that I am using (after crop it 4 times)
The question , How can I improve the SURF results to get the three vertebrae ?
any help will be so appreciate :D
here is the image that show the perfect results .... big box has 3 boxes ...

This is the code that I am using First parameters (Mat img_object) is the template image that I am trying to find in (Mat img_scene) , this second paramter is the big box that has the 3 vertebrae , third parameter is the size of the box that I wanna draw around the object when we find it
CvRect Identify_SURF_Frame (Mat img_object , Mat img_scene , CvRect in_box)
{
cvNamedWindow("Good Matches & Object detection", CV_WINDOW_AUTOSIZE);
CvRect output_box;
//-- Step 1: Detect the keypoints using SURF Detector
int minHessian = 1; // I reduce this number so I can have a lot of number for keypoints
SurfFeatureDetector detector( minHessian , 2 , 3 , true , true );
std::vector<KeyPoint> keypoints_object, keypoints_scene;
detector.detect( img_object, keypoints_object );
detector.detect( img_scene, keypoints_scene );
//-- Step 2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor;
Mat descriptors_object, descriptors_scene;
extractor.compute( img_object, keypoints_object, descriptors_object );
extractor.compute( img_scene, keypoints_scene, descriptors_scene );
//-- Step 3: Matching descriptor vectors using FLANN matcher
BruteForceMatcher < L2 < float > > matcher;
std::vector< DMatch > matches;
matcher.match( descriptors_object, descriptors_scene, matches );
double max_dist = 0; double min_dist = 100;
//-- Quick calculation of max and min distances between keypoints
for( int i = 0; i < descriptors_object.rows; i++ )
{
double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
}
//-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
std::vector< DMatch > good_matches;
for( int i = 0; i < descriptors_object.rows; i++ )
{
if( matches[i].distance < 4 * min_dist )
{
good_matches.push_back( matches[i]);
}
}
Mat img_matches;
drawMatches( img_object, keypoints_object, img_scene, keypoints_scene, good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
//-- Localize the object
std::vector<Point2f> obj;
std::vector<Point2f> scene;
if (good_matches.size() >= 4)
{
for( int i = 0; i < good_matches.size(); i++ )
{
//-- Get the keypoints from the good matches
obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
}
Mat H = findHomography( obj, scene, CV_RANSAC );
//-- Get the corners from the image_1 ( the object to be "detected" )
std::vector<Point2f> obj_corners(2);
obj_corners[0] = cvPoint(0,0);
obj_corners[1] = cvPoint( img_object.cols, 0 );
//obj_corners[2] = cvPoint( img_object.cols, img_object.rows );
//obj_corners[3] = cvPoint( 0, img_object.rows );
std::vector<Point2f> scene_corners(2);
perspectiveTransform( obj_corners, scene_corners, H);
int x1 , x2 , y1 , y2 ;
x1 = scene_corners[0].x + Point2f( img_object.cols, 0).x ;
y1 = scene_corners[0].y + Point2f( img_object.cols, 0).y ;
x2 = scene_corners[0].x + Point2f( img_object.cols, 0).x + in_box.width ;
y2 = scene_corners[0].y + Point2f( img_object.cols, 0).y + in_box.height ;
rectangle(img_matches , cvPoint(x1, y1) , cvPoint(x2, y2) , Scalar( 255, 255, 255), 1 );
output_box.x = x1 - in_box.width ;
output_box.y = y1 ;
output_box.width = in_box.width ;
output_box.height = in_box.height ;
}
//-- Show detected matches
imshow( "Good Matches & Object detection", img_matches );
return output_box ;
}