I'm having trouble determining Fourier transform of signal. I have 2 ideas on how to solve this problem.
Given the signal is periodic I could use formula for Fourier transform of periodic signals:
$$X(j\omega) = \sum\limits_{k=-\infty}^{\infty} C_k \cdot 2\pi \delta(\omega-k\omega_{0})$$ where $\omega_0 = \frac{2 \pi}{4T}$.
Also, I could make signal $g(t)$ non periodic rectangular signal, and $h(t)$ alternating pulse train, and then $g(t)*h(t)$ should give me signal I needed. Although I have some ideas I'm stuck solving this problem. Please help. Thanks




$$ X(j\omega) \triangleq \mathscr{F}\big{ x(t) \big} = \int\limits_{-\infty}^{\infty} x(t) e^{-j \omega t} \mathrm{d}t$$
and the Fourier series
$$ x(t) = \sum\limits_{k=-\infty}^{\infty} C_k e^{j k \omega_0 t} $$
where
$$ C_k = \frac{\omega_0}{2 \pi} \int\limits_{t_0}^{t_0+2 \pi/\omega_0} x(t) e^{-j k \omega_0 t} \mathrm{d}t $$ for any real $t_0$.
– robert bristow-johnson Mar 22 '19 at 21:57