In his celebrated paper "Conjugate Coding" (written around 1970), Stephen Wiesner proposed a scheme for quantum money that is unconditionally impossible to counterfeit, assuming that the issuing bank has access to a giant table of random numbers, and that banknotes can be brought back to the bank for verification. In Wiesner's scheme, each banknote consists of a classical "serial number" $s$, together with a quantum money state $|\psi_s\rangle$ consisting of $n$ unentangled qubits, each one either
$$|0\rangle,\ |1\rangle,\ |+\rangle=(|0\rangle+|1\rangle)/\sqrt{2},\ \text{or}\ |-\rangle=(|0\rangle-|1\rangle)/\sqrt{2}.$$
The bank remembers a classical description of $|\psi_s\rangle$ for every $s$. And therefore, when $|\psi_s\rangle$ is brought back to the bank for verification, the bank can measure each qubit of $|\psi_s\rangle$ in the correct basis (either $\{|0\rangle,|1\rangle\}$ or ${|+\rangle,|-\rangle}$), and check that it gets the correct outcomes.
On the other hand, because of the uncertainty relation (or alternatively, the No-Cloning Theorem), it's "intuitively obvious" that, if a counterfeiter who doesn't know the correct bases tries to copy $|\psi_s\rangle$, then the probability that both of the counterfeiter's output states pass the bank's verification test can be at most $c^n$, for some constant $c<1$. Furthermore, this should be true regardless of what strategy the counterfeiter uses, consistent with quantum mechanics (e.g., even if the counterfeiter uses fancy entangled measurements on $|\psi_s\rangle$).
However, while writing a paper about other quantum money schemes, my coauthor and I realized that we'd never seen a rigorous proof of the above claim anywhere, or an explicit upper bound on $c$: neither in Wiesner's original paper nor in any later one.
So, has such a proof (with an upper bound on $c$) been published? If not, then can one derive such a proof in a more-or-less straightforward way from (say) approximate versions of the No-Cloning Theorem, or results about the security of the BB84 quantum key distribution scheme?
Update: In light of the discussion with Joe Fitzsimons below, I should clarify that I'm looking for more than just a reduction from the security of BB84. Rather, I'm looking for an explicit upper bound on the probability of successful counterfeiting (i.e., on $c$)---and ideally, also some understanding of what the optimal counterfeiting strategy looks like. I.e., does the optimal strategy simply measure each qubit of $|\psi_s\rangle$ independently, say in the basis
$$\{ \cos(\pi/8)|0\rangle+\sin(\pi/8)|1\rangle, \sin(\pi/8)|0\rangle-\cos(\pi/8)|1\rangle \}?$$
Or is there an entangled counterfeiting strategy that does better?
Update 2: Right now, the best counterfeiting strategies that I know are (a) the strategy above, and (b) the strategy that simply measures each qubit in the $\{|0\rangle,|1\rangle\}$ basis and "hopes for the best." Interestingly, both of these strategies turn out to achieve a success probability of (5/8)n. So, my conjecture of the moment is that (5/8)n might be the right answer. In any case, the fact that 5/8 is a lower bound on c rules out any security argument for Wiesner's scheme that's "too" simple (for example, any argument to the effect that there's nothing nontrivial that a counterfeiter can do, and therefore the right answer is c=1/2).
Update 3: Nope, the right answer is (3/4)n! See the discussion thread below Abel Molina's answer.
Solving this problem completely requires some care in defining the types of cheating strategies that are allowed. There's an interactive strategy that takes linear time and works every time if the bank isn't careful about how it answers requests to verify bills, and a fully satisfactory proof would take queries to the bank into account.
– Oct 25 '11 at 06:46