The statistical difference between two families of distributions of random variables:
Let $\mathrm{\mathbf{X}} = \{ X_{l} \}_{l}$ and $\mathrm{\mathbf{Y}} = \{ Y_{l} \}_{l}$ be two families of distributions of random variables, the statistical difference of $\mathrm{\mathbf{X}}$ and $\mathrm{\mathbf{Y}}$ is defined as $$d^{\mathrm{\mathbf{X}}, \mathrm{\mathbf{Y}}} ( l )= \frac{1}{2}\sum_{s} \left\vert \Pr[X_{l} = s] - \Pr[Y_{l} = s] \right\vert$$
The computational difference between two families of distributions of random variables:
Let $\mathrm{\mathbf{X}} = \{ X_{l} \}_{l}$ and $\mathrm{\mathbf{Y}} = \{ Y_{l} \}_{l}$ be two families of distributions of random variables, for any PPT algorithm $A$, the computational difference of $\mathrm{\mathbf{X}}$ and $\mathrm{\mathbf{Y}}$ is defined as $$d^{\mathrm{\mathbf{X}}, \mathrm{\mathbf{Y}}}_{A} ( l )=\left\vert \Pr[s \leftarrow X_{l} : A \left( 1^{l}, s \right) = 1] - \Pr[s \leftarrow Y_{l} : A \left( 1^{l}, s \right) = 1] \right\vert$$
This notion can be used to define the PRGs.
The computational difference between two families of distributions of functions:
Let $\mathrm{\mathbf{F}} = \{ F_{l} \}_{l}$ and $\mathrm{\mathbf{G}} = \{ G_{l} \}_{l}$ be two families of distributions of functions, for any PPT algorithm $A$, the computational difference of $\mathrm{\mathbf{F}}$ and $\mathrm{\mathbf{G}}$ is defined as $$d^{\mathrm{\mathbf{F}}, \mathrm{\mathbf{G}}}_{A} ( l )= \left\vert \Pr[f \leftarrow F_{l} : A^{f(\cdot)} \left( 1^{l} \right) = 1] - \Pr[g \leftarrow G_{l} : A^{g(\cdot)} \left( 1^{l} \right) = 1] \right\vert$$
This notion can be used to define the PRFs.
I am thinking that there should be a definition about the statistical difference between two families of distributions of functions. (It is denoted as $d^{\mathrm{\mathbf{F}}, \mathrm{\mathbf{G}}} ( l )$).
There is a possible way:
For every input $x \in \{\ 0,1 \,\}^{*}$, let $F_{l} \left( x \right)$ denotes the distribution of $f(x)$ where $f \leftarrow F_{l}$. Maybe one can use $d^{\mathrm{\mathbf{F}}(x),\mathrm{\mathbf{G}}(x)} (\cdot)$ to define the statistical difference between $\mathrm{\mathbf{F}}$ and $\mathrm{\mathbf{G}}$, where $\mathrm{\mathbf{F}}(x) = \{ F_{l}(x) \}_{l}$ and $\mathrm{\mathbf{G}}(x) = \{ G_{l}(x) \}_{l}$.
However, $d^{\mathrm{\mathbf{F}}(x),\mathrm{\mathbf{G}}(x)} (l)$ depends on both $x$ and $l$. Thus, there exists a problem, $d^{\mathrm{\mathbf{F}}(x),\mathrm{\mathbf{G}}(x)} (l)$ may not be consistency for $x$. If I define $$d^{\mathrm{\mathbf{F}},\mathrm{\mathbf{G}}} (l) =\sup_{x \in \{\, 0,1 \,\}^{*}} d^{\mathrm{\mathbf{F}}(x),\mathrm{\mathbf{G}}(x)} (l) =\sup_{x \in \{\, 0,1 \,\}^{*}}\frac{1}{2}\sum_{s} \left\vert \Pr[F_{l}(x) = s] - \Pr[G_{l}(x) = s] \right\vert$$ Then $d^{\mathrm{\mathbf{F}},\mathrm{\mathbf{G}}} (\cdot)$ may be not negligible even if for every $x$, $d^{\mathrm{\mathbf{F}}(x),\mathrm{\mathbf{G}}(x)} (\cdot)$ is negligible.