I need to understand the meaning of the FOL statement below.
$$ \forall x \exists y \forall z (z \neq y \iff f(x) \neq z) $$
Does this imply that $x$, $y$, and $z$ cannot be the same or $f(x)$ has no value?
The statement is
"for all $x$, there exists a value of $y$ such that for all $z$,
$z\neq y$ if and only if $z \neq f(x)$".
This can be simplified: $$\begin{align} & & \forall x \exists y \forall z (z\neq y \iff z \neq f(x))\\ &\implies & \forall x \exists y \forall z (z=y \iff z = f(x))\\ &\implies & \forall x \exists y \forall z (y = f(x))\\ &\implies & \forall x \exists y (y = f(x))\\ \end{align}$$
If we denote the set of all values of $x$ by $X$ and the set of all values of $y$ by $Y$, then this tells us that the function $f$ maps every $x$ in $X$ to a $y$ in $Y$. That is, $f: X \to Y$.