Subgrup

În matematică, dat fiind un grup G cu un operator binar ∗, o submulțime H a lui G se numește subgrup al lui G dacă H formează și el un grup cu operatorul ∗. Mai exact, H este subgrup al lui G dacă restricționarea lui ∗ la H × H este operator de grup pe H. Aceasta se notează de regulă cu HG, citit ca „H este subgrup al lui G”.

Subgrupul trivial al oricărui grup {e} constă doar din elementul neutru.

Un subgrup propriu al grupului G este un subgrup H a cărui mulțime este submulțime proprie a lui of G (adică HG). Aceasta se notează de regulă ca H < G, adică "H este subgrup propriu al lui G”. Unii autori exclud și grupul trivial din definiția subgrupului propriu (adică {e} ≠ HG).[1][2]

Daca H este subgrup al lui G, atunci G este uneori denumit supergrup al lui H.

Aceleași definiții se aplică mai general când G este un semigrup arbitrar, dar acest articol tratează doar subgrupurile unor grupuri. Grupul G este uneori notat cu perechea ordonată (G, ∗), de regulă pentru a accentua operațiunea ∗ atunci când G conține și alte structuri algebrice.

Proprietăți de bază ale subgrupurilor

  • O submulțime H a grupului G este subgrup al lui G dacă și numai dacă este nevidă și închisă în raport cu produsul și inversa. (Condițiile închiderii înseamnă: oricare ar fi a și b din H, atunci ab și a1 sunt și ele în H. Aceste condiții se pot combina într-una singură echivalentă: oricând a și b sunt în H, atunci ab1 este tot în H.) În cazul când H este finit, atunci H este subgrup dacă și numai dacă H este închis în raport cu produsul. (În acest caz, orice element a din H generează un subgrup finit ciclical lui H, iar inversa lui a este a1 = an 1, unde n este ordinul lui a.)
  • Condiția de mai sus se poate formula în termeni de omomorfism; adică, H este subgrup al grupului G dacă și numai dacă H este submulțime a lui G și există un omomorfism de includere (adică i(a) = a oricare ar fi a) de la H la G.
  • Elementul neutru al unui subgrup este elementul neutru al grupului: dacă G este grup cu elementul neutru eG, și H este subgrup al lui G cu elementul neutru eH, atunci eH = eG.
  • Elementul simetric al unui element dintr-un subgrup este element simetric al elementului și în grupː dacă H este un subgrup al grupului G, și a și b sunt elemente din H astfel încânt ab = ba = eH, atunci ab = ba = eG.
  • Intersecția subgrupurilor A și B este și ea un subgrup.[3] Reuniunea subgrupurilor A și B este tot subgrup dacă și numai dacă unul dintre ele îl conține pe celălalt, întrucât, de exemplu 2 și 3 fac parte din reuniunea lui 2Z cu 3Z, dar suma lor, 5, nu face parte. Un alt exemplu este reuniunea axelor x și y din planul complex (cu operația de adunare); ambele sunt subgrupuri ale planului complex, dar reuniunea lor nu. Acesta este și un exemplu de două subgrupuri a căror intersecție este subgrupul trivial, format doar din elementul neutru.
  • Dacă S este o submulțime a lui G, atunci există unsubgrup minim ce conține S, ce poate fi găsită luând intersecția tuturor grupurilor ce conțin S; el se notează cu <S> și este denumit subgrup generat de S. Un element din G face parte din <S> dacă și numai dacă este produs finit de elemente din S și inversele lor.
  • Orice element a dintr-un grup G generează subgrupul ciclic <a>. Dacă <a> este izomorf cu Z/nZ pentru un întreg pozitiv n, atunci n este cel mai mic întreg pozitiv pentru care an = e, iar n se numește ordinul lui a. Dacă <a> este izomorf cu Z, atunci se spune că a are ordin infinit.

Codomenii și teorema lui Lagrange

Dat fiind un subgrup H și un a din G, se definește codomeniul stâng aH = {ah : h în H}. Întrucât a are element simetric, aplicația φ : HaH dată de φ(h) = ah este bijectivă. Mai mult, orice element din G este conținut într-un singur codomeniu stâng al lui H; codomeniile stângi sunt clase de echivalență corespunzătoare relației de echivalență a1 ~ a2 dacă și numai dacă a1−1a2 face parte din H. Numărul de codomenii drepte ale lui H se numește indicele lui H în G și se notează cu [G : H].

Teorema lui Lagrange afirmă că pentru un grup finit G și un subgrup H,

unde cu |G| și  |H| se notează ordinul lui G, respectiv H. În particular, ordinul fiecărui subgrup al lui G (și ordinul fiecărui element al lui G) trebuie să fie divizor al lui |G|.

Codomeniile drepte sunt definite analog: Ha = {ha : h în H}. Ele sunt și clase de echivalență pentru o relație de echivalență corespunzătoare și numărul lor este egal cu [G : H].

Dacă aH = Ha oricare ar fi a din G, atunci despre H se spune că este subgrup normal. Fiecare subgrup de indice 2 este normal: codomeniul stâng și cel drept sunt doar subgrupul și complementul său. Mai general, dacă p este cel mai mic număr prim care divide ordinul unui grup finit G, atunci orice subgrup de indice p (dacă există) este normal.

Exemplu: Subgrupurile lui Z8

Fie G grupul ciclic Z8 cu elementele

și a cărui operație de grup este is adunarea modulo opt. Tabela sa Cayley este

+ 0 2 4 6 1 3 5 7
0 0 2 4 6 1 3 5 7
2 2 4 6 0 3 5 7 1
4 4 6 0 2 5 7 1 3
6 6 0 2 4 7 1 3 5
1 1 3 5 7 2 4 6 0
3 3 5 7 1 4 6 0 2
5 5 7 1 3 6 0 2 4
7 7 1 3 5 0 2 4 6

Acest grup are două subgrupuri netriviale: J={0,4} și H={0,2,4,6}, unde J este și un subgrup al lui H. Tabela Cayley pentru H este pătratul din stânga-sus al tabelei Cayley pentru G. Grupul G este ciclic, și la fel și subgrupurile sale. În general, subgrupurile grupurilor ciclice sunt și ele ciclice.

Note

  1. Hungerford (1974), p. 32
  2. Artin (2011), p. 43
  3. Jacobson (2009), p. 41

Bibliografie

  • Jacobson, Nathan (), Basic algebra, 1 (ed. 2nd), Dover, ISBN 978-0-486-47189-1.
  • Hungerford, Thomas (), Algebra (ed. 1st), Springer-Verlag, ISBN 9780387905181.
  • Artin, Michael (), Algebra (ed. 2nd), Prentice Hall, ISBN 9780132413770.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.