Eugène Charles Catalan

Eugène Charles Catalan (n. 30 mai 1814 - d. 14 februarie 1894) a fost un matematician franco-belgian, specialist în teoria numerelor. De numele său este legată o celebră conjectură, conjectura lui Catalan, pe care a formulat-o în 1844, fiind demonstrată abia în 2002 de către matematicianul român Preda Mihăilescu.

Eugène Charles Catalan
Date personale
Născut[1][2][3][4] Modificați la Wikidata
Brugge, Flandra, Belgia[5] Modificați la Wikidata
Decedat (79 de ani)[1][2][4][6] Modificați la Wikidata
Liège, Valonia, Belgia[5] Modificați la Wikidata
Cetățenie Belgia
 Franța Modificați la Wikidata
Ocupațiematematician
cadru didactic universitar[*] Modificați la Wikidata
Locul desfășurării activitățiiParis[7] Modificați la Wikidata
Limbi vorbitelimba franceză[8] Modificați la Wikidata
Activitate
Alma materÉcole polytechnique
Universitatea din Liège[*]
Universitatea din Paris[9]  Modificați la Wikidata
OrganizațieAcademia de Științe din Sankt Petersburg[*]
Universitatea din Liège[*]
lycée Saint-Louis[*][[lycée Saint-Louis (post-secondary school in Paris)|]][10]  Modificați la Wikidata
Profesor pentruFrançois Deruyts[*][9]  Modificați la Wikidata

A considerat numerele de forma:

care ulterior îi vor purta numele. Aceste numere sunt întregi pentru orice

În 1842 a descoperit că o suprafață riglată poate fi numai atunci minimală și reală, când este plană sau când este suprafață elicoidală ordinară.

În 1856 a demonstrat că dacă o spirală logaritmică se rostogolește pe o dreaptă, polul său descrie o altă dreaptă.

Catalan a întocmit un memoriu relativ la transcendentele lui Euler.

  1. Autoritatea BnF, accesat în
  2. MacTutor History of Mathematics archive, accesat în
  3. Eugène Charles Catalan, Baza de date Léonore, accesat în
  4. Eugène Catalan, Biographie nationale de Belgique, accesat în
  5. www.accademiadellescienze.it, accesat în
  6. Éugene Charles Catalan, Brockhaus Enzyklopädie, accesat în
  7. „Eugène Charles Catalan”, Gemeinsame Normdatei, accesat în
  8. Autoritatea BnF, accesat în
  9. Genealogia matematicienilor
  10. https://books.openedition.org/cths/2661?lang=fr Lipsește sau este vid: |title= (ajutor)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.