5-Methyltetrahydrofolate:corrinoid/iron-sulfur protein Co-methyltransferase

5-methyltetrahydrofolate:corrinoid/iron-sulfur protein Co-methyltransferase
Identifiers
EC no.2.1.1.258
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Search
PMCarticles
PubMedarticles
NCBIproteins

5-methyltetrahydrofolate:corrinoid/iron-sulfur protein Co-methyltransferase (EC 2.1.1.258, acsE (gene)) is an enzyme with systematic name 5-methyltetrahydrofolate:corrinoid/iron-sulfur protein methyltransferase.[1][2][3] This enzyme catalyses the following chemical reaction

[Methyl-Co(III) corrinoid Fe-S protein] + tetrahydrofolate a [Co(I) corrinoid Fe-S protein] + 5-methyltetrahydrofolate

This enzyme catalyses the transfer of a carbon atom and associated hydrogen atoms from the N5 position of methyltetrahydrofolate to the 5-methoxybenzimidazolylcobamide cofactor of a corrinoid/Fe-S protein, containing a corrin ring similar to that in cobalamin. Although called a methyl transferase, the net transfer is of one carbon atom and two hydrogen atoms  the methyltetrahydrofolate contains only two hydrogen atoms more than the tetrahydrofolate. The cobalt atom is able to change oxidation state by obtaining electrons from the 4Fe-4S complex in the protein.[4]

References

  1. Roberts DL, Zhao S, Doukov T, Ragsdale SW (October 1994). "The reductive acetyl coenzyme A pathway: sequence and heterologous expression of active methyltetrahydrofolate:corrinoid/iron-sulfur protein methyltransferase from Clostridium thermoaceticum". Journal of Bacteriology. 176 (19): 6127–30. doi:10.1128/jb.176.19.6127-6130.1994. PMC 196833. PMID 7928975.
  2. Doukov T, Seravalli J, Stezowski JJ, Ragsdale SW (August 2000). "Crystal structure of a methyltetrahydrofolate- and corrinoid-dependent methyltransferase". Structure. 8 (8): 817–30. doi:10.1016/s0969-2126(00)00172-6. PMID 10997901.
  3. Doukov TI, Hemmi H, Drennan CL, Ragsdale SW (March 2007). "Structural and kinetic evidence for an extended hydrogen-bonding network in catalysis of methyl group transfer. Role of an active site asparagine residue in activation of methyl transfer by methyltransferases". The Journal of Biological Chemistry. 282 (9): 6609–6618. doi:10.1074/jbc.m609828200. PMC 3966722. PMID 17172470.
  4. Stephen Ragsdale and Elizabeth Pierce (December 2008). "Acetogenesis and the Wood-Ljungdahl pathway of CO(2) fixation". Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 1784 (12): 1873–1898. doi:10.1016/j.bbapap.2008.08.012. PMC 2646786. PMID 18801467.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.