Softplus

class torch.nn.Softplus(beta=1, threshold=20) [source]

Applies the Softplus function Softplus(x)=1βlog(1+exp(βx))\text{Softplus}(x) = \frac{1}{\beta} * \log(1 + \exp(\beta * x)) element-wise.

SoftPlus is a smooth approximation to the ReLU function and can be used to constrain the output of a machine to always be positive.

For numerical stability the implementation reverts to the linear function when input×β>thresholdinput \times \beta > threshold.

Parameters
  • beta (int) – the β\beta value for the Softplus formulation. Default: 1
  • threshold (int) – values above this revert to a linear function. Default: 20
Shape:
  • Input: ()(*), where * means any number of dimensions.
  • Output: ()(*), same shape as the input.
../_images/Softplus.png

Examples:

>>> m = nn.Softplus()
>>> input = torch.randn(2)
>>> output = m(input)

© 2024, PyTorch Contributors
PyTorch has a BSD-style license, as found in the LICENSE file.
https://pytorch.org/docs/2.1/generated/torch.nn.Softplus.html