pandas.Series.dropna
- Series.dropna(*, axis=0, inplace=False, how=None, ignore_index=False)[source]
-
Return a new Series with missing values removed.
See the User Guide for more on which values are considered missing, and how to work with missing data.
- Parameters:
-
- axis:{0 or ‘index’}
-
Unused. Parameter needed for compatibility with DataFrame.
- inplace:bool, default False
-
If True, do operation inplace and return None.
- how:str, optional
-
Not in use. Kept for compatibility.
- ignore_index:bool, default False
-
If
True, the resulting axis will be labeled 0, 1, …, n - 1.New in version 2.0.0.
- Returns:
-
- Series or None
-
Series with NA entries dropped from it or None if
inplace=True.
See also
Series.isna-
Indicate missing values.
Series.notna-
Indicate existing (non-missing) values.
Series.fillna-
Replace missing values.
DataFrame.dropna-
Drop rows or columns which contain NA values.
Index.dropna-
Drop missing indices.
Examples
>>> ser = pd.Series([1., 2., np.nan]) >>> ser 0 1.0 1 2.0 2 NaN dtype: float64
Drop NA values from a Series.
>>> ser.dropna() 0 1.0 1 2.0 dtype: float64
Empty strings are not considered NA values.
Noneis considered an NA value.>>> ser = pd.Series([np.nan, 2, pd.NaT, '', None, 'I stay']) >>> ser 0 NaN 1 2 2 NaT 3 4 None 5 I stay dtype: object >>> ser.dropna() 1 2 3 5 I stay dtype: object
© 2008–2022, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/2.2.2/reference/api/pandas.Series.dropna.html