pandas.core.window.rolling.Rolling.sum
- Rolling.sum(numeric_only=False, engine=None, engine_kwargs=None)[source]
-
Calculate the rolling sum.
- Parameters:
-
- numeric_only:bool, default False
-
Include only float, int, boolean columns.
New in version 1.5.0.
- engine:str, default None
-
'cython': Runs the operation through C-extensions from cython.'numba': Runs the operation through JIT compiled code from numba.-
None: Defaults to'cython'or globally settingcompute.use_numbaNew in version 1.3.0.
- engine_kwargs:dict, default None
-
For
'cython'engine, there are no acceptedengine_kwargs-
For
'numba'engine, the engine can acceptnopython,nogilandparalleldictionary keys. The values must either beTrueorFalse. The defaultengine_kwargsfor the'numba'engine is{'nopython': True, 'nogil': False, 'parallel': False}New in version 1.3.0.
- Returns:
-
- Series or DataFrame
-
Return type is the same as the original object with
np.float64dtype.
See also
pandas.Series.rolling-
Calling rolling with Series data.
pandas.DataFrame.rolling-
Calling rolling with DataFrames.
pandas.Series.sum-
Aggregating sum for Series.
pandas.DataFrame.sum-
Aggregating sum for DataFrame.
Notes
See Numba engine and Numba (JIT compilation) for extended documentation and performance considerations for the Numba engine.
Examples
>>> s = pd.Series([1, 2, 3, 4, 5]) >>> s 0 1 1 2 2 3 3 4 4 5 dtype: int64
>>> s.rolling(3).sum() 0 NaN 1 NaN 2 6.0 3 9.0 4 12.0 dtype: float64
>>> s.rolling(3, center=True).sum() 0 NaN 1 6.0 2 9.0 3 12.0 4 NaN dtype: float64
For DataFrame, each sum is computed column-wise.
>>> df = pd.DataFrame({"A": s, "B": s ** 2}) >>> df A B 0 1 1 1 2 4 2 3 9 3 4 16 4 5 25>>> df.rolling(3).sum() A B 0 NaN NaN 1 NaN NaN 2 6.0 14.0 3 9.0 29.0 4 12.0 50.0
© 2008–2022, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/2.2.2/reference/api/pandas.core.window.rolling.Rolling.sum.html