std/rationals
Source Edit This module implements rational numbers, consisting of a numerator and a denominator. The denominator can not be 0.
Example:
import std/rationals
let
r1 = 1 // 2
r2 = -3 // 4
doAssert r1 + r2 == -1 // 4
doAssert r1 - r2 == 5 // 4
doAssert r1 * r2 == -3 // 8
doAssert r1 / r2 == -2 // 3
Imports
math, hashes
Types
Rational[T] = object
num*, den*: T
- A rational number, consisting of a numerator
num and a denominator den. Source Edit
Procs
func `$`[T](x: Rational[T]): string
- Turns a rational number into a string.
Example:
doAssert $(1 // 2) == "1/2"
Source Edit func `*`[T](x, y: Rational[T]): Rational[T]
- Multiplies two rational numbers. Source Edit
func `*`[T](x: Rational[T]; y: T): Rational[T]
- Multiplies the rational
x with the int y. Source Edit func `*`[T](x: T; y: Rational[T]): Rational[T]
- Multiplies the int
x with the rational y. Source Edit func `*=`[T](x: var Rational[T]; y: Rational[T])
- Multiplies the rational
x by y in-place. Source Edit func `*=`[T](x: var Rational[T]; y: T)
- Multiplies the rational
x by the int y in-place. Source Edit func `+`[T](x, y: Rational[T]): Rational[T]
- Adds two rational numbers. Source Edit
func `+`[T](x: Rational[T]; y: T): Rational[T]
- Adds the rational
x to the int y. Source Edit func `+`[T](x: T; y: Rational[T]): Rational[T]
- Adds the int
x to the rational y. Source Edit func `+=`[T](x: var Rational[T]; y: Rational[T])
- Adds the rational
y to the rational x in-place. Source Edit func `+=`[T](x: var Rational[T]; y: T)
- Adds the int
y to the rational x in-place. Source Edit func `-`[T](x, y: Rational[T]): Rational[T]
- Subtracts two rational numbers. Source Edit
func `-`[T](x: Rational[T]): Rational[T]
- Unary minus for rational numbers. Source Edit
func `-`[T](x: Rational[T]; y: T): Rational[T]
- Subtracts the int
y from the rational x. Source Edit func `-`[T](x: T; y: Rational[T]): Rational[T]
- Subtracts the rational
y from the int x. Source Edit func `-=`[T](x: var Rational[T]; y: Rational[T])
- Subtracts the rational
y from the rational x in-place. Source Edit func `-=`[T](x: var Rational[T]; y: T)
- Subtracts the int
y from the rational x in-place. Source Edit func `/`[T](x, y: Rational[T]): Rational[T]
- Divides the rational
x by the rational y. Source Edit func `/`[T](x: Rational[T]; y: T): Rational[T]
- Divides the rational
x by the int y. Source Edit func `/`[T](x: T; y: Rational[T]): Rational[T]
- Divides the int
x by the rational y. Source Edit func `//`[T](num, den: T): Rational[T]
- A friendlier version of initRational.
Example:
let x = 1 // 3 + 1 // 5
doAssert x == 8 // 15
Source Edit func `/=`[T](x: var Rational[T]; y: Rational[T])
- Divides the rational
x by the rational y in-place. Source Edit func `/=`[T](x: var Rational[T]; y: T)
- Divides the rational
x by the int y in-place. Source Edit func `<`(x, y: Rational): bool
- Returns true if
x is less than y. Source Edit func `<=`(x, y: Rational): bool
- Returns tue if
x is less than or equal to y. Source Edit func `==`(x, y: Rational): bool
- Compares two rationals for equality. Source Edit
func `^`[T: SomeInteger](x: Rational[T]; y: T): Rational[T]
-
Computes x to the power of y.
The exponent y must be an integer. Negative exponents are supported but floating point exponents are not.
Example:
doAssert (-3 // 5) ^ 0 == (1 // 1)
doAssert (-3 // 5) ^ 1 == (-3 // 5)
doAssert (-3 // 5) ^ 2 == (9 // 25)
doAssert (-3 // 5) ^ -2 == (25 // 9)
Source Edit func abs[T](x: Rational[T]): Rational[T]
- Returns the absolute value of
x. Example:
doAssert abs(1 // 2) == 1 // 2
doAssert abs(-1 // 2) == 1 // 2
Source Edit func cmp(x, y: Rational): int
- Compares two rationals. Returns
- a value less than zero, if
x < y
- a value greater than zero, if
x > y
- zero, if
x == y
Source Edit func `div`[T: SomeInteger](x, y: Rational[T]): T
- Computes the rational truncated division. Source Edit
func floorDiv[T: SomeInteger](x, y: Rational[T]): T
-
Computes the rational floor division.
Floor division is conceptually defined as floor(x / y). This is different from the div operator, which is defined as trunc(x / y). That is, div rounds towards 0 and floorDiv rounds down.
Source Edit func floorMod[T: SomeInteger](x, y: Rational[T]): Rational[T]
-
Computes the rational modulo by floor division (modulo).
This is same as x - floorDiv(x, y) * y. This func behaves the same as the % operator in Python.
Source Edit func hash[T](x: Rational[T]): Hash
- Computes the hash for the rational
x. Source Edit func initRational[T: SomeInteger](num, den: T): Rational[T]
-
Creates a new rational number with numerator num and denominator den. den must not be 0.
Note: den != 0 is not checked when assertions are turned off.
Source Edit func `mod`[T: SomeInteger](x, y: Rational[T]): Rational[T]
- Computes the rational modulo by truncated division (remainder). This is same as
x - (x div y) * y. Source Edit func reciprocal[T](x: Rational[T]): Rational[T]
- Calculates the reciprocal of
x (1/x). If x is 0, raises DivByZeroDefect. Source Edit func reduce[T: SomeInteger](x: var Rational[T])
-
Reduces the rational number x, so that the numerator and denominator have no common divisors other than 1 (and -1). If x is 0, raises DivByZeroDefect.
Note: This is called automatically by the various operations on rationals.
Example:
var r = Rational[int](num: 2, den: 4) # 1/2
reduce(r)
doAssert r.num == 1
doAssert r.den == 2
Source Edit func toFloat[T](x: Rational[T]): float
- Converts a rational number
x to a float. Source Edit func toInt[T](x: Rational[T]): int
- Converts a rational number
x to an int. Conversion rounds towards 0 if x does not contain an integer value. Source Edit func toRational(x: float; n: int = high(int) shr 32): Rational[int] {.
...raises: [], tags: [], forbids: [].} -
Calculates the best rational approximation of x, where the denominator is smaller than n (default is the largest possible int for maximal resolution).
The algorithm is based on the theory of continued fractions.
Example:
let x = 1.2
doAssert x.toRational.toFloat == x
Source Edit func toRational[T: SomeInteger](x: T): Rational[T]
- Converts some integer
x to a rational number. Example:
doAssert toRational(42) == 42 // 1
Source Edit